
1

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name
Software engineering [S1Inf1>IO]

Course
Field of study
Computing

Year/Semester
3/5

Area of study (specialization)
–

Profile of study
general academic

Level of study
first-cycle

Course offered in
Polish

Form of study
full-time

Requirements
compulsory

Number of hours
Lecture
30

Laboratory classes
30

Other (e.g. online)
0

Tutorials
0

Projects/seminars
0

Number of credit points
4,00

Coordinators
dr hab. inż. Mirosław Ochodek prof. PP
miroslaw.ochodek@put.poznan.pl
dr inż. Wojciech Complak
wojciech.complak@put.poznan.pl

Lecturers

Prerequisites
A student starting this subject should have basic knowledge of the basics programming, computer science 
tools, algorithms and data structures, object-oriented programming, architecture of computer systems, 
database systems. In addition, it should have ability to solve basic programming problems and skill 
obtaining information from indicated sources.

Course objective
1) Providing students with basic knowledge of software engineering in the field of organization course of a 
programming project, defining requirements, modeling systems, software design, quality assurance 
(including software testing), tools supporting software development (including version management tools). 
2) Developing students' skills in solving simple design problems, building and testing software, using tools 
supporting production software, modifying and using programming components. 3) Developing students' 
skills of effective work as an analyst/designer/programmer in... a programming team working in accordance 
with classic or agile (Agile) methodologies.



2

Course-related learning outcomes
Knowledge:
1. Has basic knowledge of IT project management.
2. Has basic knowledge of requirements engineering (functional requirements, use cases,
non-functional requirements).
3. Has basic knowledge of software modeling and design.
4. Has basic knowledge of software verification and validation methods.

Skills:
1. Is able to participate in project meetings using the Scrum methodology as a team member
development (planning, sprint review and retrospective).
2. Is able to specify functional and non-functional requirements.
3. Is able to create object models in UML notation (class model, state machine model, sequence model).
4. Is able to create test cases and automate them (unit tests, tests
acceptance and performance tests).

Social competence:
1. Is aware that programming tools and libraries are subject to constant and frequent changes
changes (e.g. based on changes in the JUnit library or version management tools) -
2. Knows examples and understands the causes of malfunctioning IT systems
led to serious financial or social losses or serious loss of health, a
even life.
3. can identify real commercial problems that can be solved
through the implementation and implementation of IT systems.

Methods for verifying learning outcomes and assessment criteria
Learning outcomes presented above are verified as follows:
Formative assessment:
a) in terms of lectures: based on answers to questions and participation in quizzes during classes
lectures
b) in the scope of the laboratory: based on the assessment of the current progress of tasks in progress
lab
Summary rating:
In terms of assessing educational outcomes regarding acquired skills and social competences
(mainly grade from laboratory classes):
a) depending on the level of completion of tasks in individual laboratory classes, the student may
receive 0 or 10 points. A student absent from classes may make up classes at another time or
complete the tasks at home with the teacher's consent. Each student can score from 0 to 120 in total
points.
b) during the semester, students carry out a group project (3-5 people) according to the recommendations 
of the Scrum methodology.
The project consists of two sprints (iterations). In each sprint, the team can achieve from 0 to n*100
(where n is the number of people in the team) points depending on the degree of task implementation. 
Each member
team can receive a maximum of 100 points per sprint, giving a total maximum of 200 points.
Based on the sum of points obtained, the final grade is determined as follows
frets:
- >=280 - 5.0
- <250, 280) - 4.5
- <220, 250) - 4.0
- <190, 220) - 3.5
- <160, 190) - 3.0
- less than 160 - 2.0
In terms of learning outcomes regarding acquired knowledge:
a) during lectures, students solve quizzes and short problem-solving tasks or
they take part in the quiz. For providing an acceptable solution (depending on its form and
character) the student receives 1%.



3

b) multiple choice test including 25 multiple-choice questions (one correct answer) or questions with
possibly one or more correct answers (the type of question is explicitly indicated in the test). Behind
Answering the question correctly, the student receives 1 point. Points are converted to a scale
percentage.
Based on the percentage points obtained (from the choice test and during the lecture) it is determined
is the final grade according to the scale:
- >= 90% - 5.0
- <80%, 90%) - 4.5
- <70%, 80%) - 4.0
- <60%, 70%) - 3.5
- <50%, 60%) - 3.0
- less than 50% - 2.0

Programme content
The course program covers the following topics:
- Introduction including the importance and role of software development in the modern world, vision
IT project, consequences of software errors, thematic scope of engineering
software
- Software configuration management (including version management systems - Git and Subversion,
automatic software building tools - Apache Ant and Apache Maven, practices
continuous integration, and the basics of runtime version management and containerization
application)
- Functional requirements (including use cases)
- Non-functional requirements (including the ISO 25010 standard)
- Software modeling and analysis (including UML notation)
- Software design (including design patterns)
- Software architecture
- Project management methodologies (Scrum and PRINCE2)
- Software quality management (including measurement in the software development process)
- Software testing (unit, integration, acceptance, non-functional)
The laboratory curriculum covers the following topics:
- Risk assessment in IT projects
- Software configuration management tools, e.g. Git, Apache Ant, Apache Maven
- Documenting functional requirements using the use case method
- Documenting non-functional requirements
- Risk assessment in an IT project
- System modeling in UML notation
- Software design using design patterns
- Software testing, including unit and performance testing
- Practical implementation of a mini-project according to the recommendations of the Scrum methodology.

Course topics
test

Teaching methods
The mini-project is implemented according to the author's method described in the article below:
Ochodek, Mirosław. "A Scrum-Centric Framework for Organizing Software Engineering Academic
Courses." In Towards a Synergistic Combination of Research and Practice in Software Engineering, pp.
207-220. Springer, Cham, 2018.
Other teaching methods include:
a) lecture: multimedia presentation, presentation illustrated with examples given on the board,
solving tasks, case studies.
b) laboratory exercises: solving tasks, practical exercises, discussion, team work,
multimedia show, workshops, demonstration.



4

Bibliography
Basic
A. Jaszkiewicz, Inżynieria oprogramowania, Helion, 1997.
2. K. Schwaber, J. Sutherland, The Scrum Guide: Przewodnik po Scrumie: Reguły Gry,
http://www.scrumguides.org, (dostępny online), 2017.

Additional
1. Wzorce projektowe w języku Java: https://www.tutorialspoint.com/design_pattern
2. Ochodek, Miroslaw, J. Nawrocki, and K. Kwarciak. Simplifying effort estimation based on Use Case
Points. Information and Software Technology 53.3 (2011): 200-213.
3. Kopczyńska, Sylwia, Jerzy Nawrocki, and Mirosław Ochodek. An Empirical Study on Catalog of Non-
functional Requirement Templates: Usefulness and Maintenance Issues. Information and Software
Technology (2018).
4. Nawrocki, Jerzy, et al. Agile requirements engineering: A research perspective. International
Conference on Current Trends in Theory and Practice of Informatics. Springer, Cham, 2014.

Breakdown of average student's workload

Hours ECTS

Total workload 100 4,00

Classes requiring direct contact with the teacher 60 2,50

Student's own work (literature studies, preparation for laboratory classes/
tutorials, preparation for tests/exam, project preparation)

40 1,50


